常规三代全长引物列表
测序类型 | 引物名称 | 引物序列 | 区域 | 文献 | 备注 |
细菌16S rRNA | 27F | 5’-AGAGTTTGATCMTGGCTCAG-3’ | 16s V1-V9 全长1.5k | [1] | Pacbio 平台 |
1492R | 5’- CRGYTACCTTGTTACGACTT-3’ | ||||
真菌ITS | ITS1 | 5'-CTTGGTCATTTAGAGGAAGTAA-3’ | ITS 全长 700bp | [2] | Pacbio 平台 |
ITS4 | 5'-TCCT CCGC TTAT TGAT ATGC-3’ | ||||
偏好产甲烷古菌 | A1F | 5′-GKTTGATCCYGSCRGAG-3′ | 16S全长1.5k | [3] | Pacbio 平台 |
1490R | 5′-GGYTACCTTGTTACGACTT-3’ |
常规引物列表
测序类型 | 引物名称 | 引物序列 | 区域 | 文献 | 备注 |
细菌16S rRNA | 341F | 5’-CCTAYGGGRBGCASCAG-3’ | 16s V3-V4 | [4] | PE250平台 |
806R | 5’-GGACTACNNGGGTATCTAAT-3’ | ||||
细菌16S rRNA | 515F | 5’- GTGCCAGCMGCCGCGG-3’ | 16s V4-V5 | [5] | PE250平台 |
907R | 5’- CCGTCAATTCMTTTRAGTTT-3’ | ||||
细菌16S rRNA | 515F | 5’- GTGCCAGCMGCCGCGG-3’ | 16s V4 | [6] | PE250平台 |
806R | 5’- GGACTACHVGGGTWTCTAAT-3’ | ||||
细菌16S rRNA | 799F | 5’- AACMGGATTAGATACCCKG-3’ | 16s V5-V6 | [7] | PE250平台 |
1115R | 5’- AGGGTTGCGCTCGTTG-3’ | ||||
真菌ITS | ITS1F | 5’- CTTGGTCATTTAGAGGAAGTAA-3’ | ITS1 | [8] | PE250平台 |
ITS2R | 5’- GCTGCGTTCTTCATCGATGC-3’ | ||||
真核18S | TAReuk454FWD1 | 5’-CCAGCASCYGCGGTAATTCC-3’ | 18s V4 | [9] | PE250平台 |
TAReukREV3 | 5’-ACTTTCGTTCTTGATYRA-3’ | ||||
古菌 | Arch519F | 5’- CAGCCGCCGCGGTAA-3’ | V4-V5 | [10] | PE250平台 |
Arch915R | 5’- GTGCTCCCCCGCCAATTCCT-3’ | ||||
鱼类(海水) | MiFish_U-F | 5’-GTTGGTAAATCTCGTGCCAGC-3’ | eDNA 12S rRNA | [11] | PE150平台 |
MiFish_U-R | 5’CATAGTGGGGTATCTAATCCTAGTTTG-3’ | ||||
鱼类(淡水) | Tele02_F | 5′-AAACTCGTGCCAGCCACC-3′ | eDNA 12S rRNA | [12] | PE150平台 |
Tele02_R | 5′-GGGTATCTAATCCCAGTTTG-3′ | ||||
真核COI | MlCOIintF | 5’GGWACWGGWTGAACWGTWTAYC CYCC-3’ | eDNA | [13] | PE250平台 |
JghHCO2198 | 5’-TAIACYTCIGGRTGICCRAARAAYCA-3’ | ||||
产甲烷菌 | Met86F | 5’- GCTCAGTAACACGTGG-3’ | 产甲烷菌 | [14] | Pacbio 平台 |
Met1340R | 5’-CGGTGTGTGCAAGGAG-3’ | ||||
固氮菌 | NifH1F | 5’- TGYGAYCCNAARGCNGA -3’ | 固氮细菌 | [15] | PE250平台 |
NifH2R | 5’- ADNGCCATCATYTCNCC-3’ | ||||
丛枝真菌 | AMV4.5NF | 5′- AAGCTCGTAGTTGAATTTCG-3’ | SSU 300bp | [16] | PE250平台 |
AMDGR | 5′-CCCAACTATCCCTATTAATCAT-3’ |
非常规引物列表
测序类型 | 引物名称 | 引物序列 | 区域 | 文献 | 备注 |
真核18S | 1380F | 5’-CCCTGCCHTTTGTACACAC -3’ | 18s V9 | [17] | PE250平台 |
1510R | 5’-CCTTCYGCAGGTTCACCTAC-3’ | ||||
真核18S | 0817F | 5’-TTAGCATGGAATAATRRAATAGGA-3' | 18S V5-V7 | [18] | PE250平台 |
1196R | 5'-TCTGGACCTGGTGAGTTTCC-3' | ||||
真核18S | SSU_FO4 | 5’-GCTTGTCTCAAAGATTAAGCC-3’ | 18S V1-V2 | [19] | PE250平台 |
SSU_R22 | 5’-GCCTGCTGCCTTCCTTGGA-3’ | ||||
古菌 | ArchU519F | 5’-CAGYMGCCRCGGKAAHACC-3’ | Arch 16s V4 | [20] | PE250平台 |
Arch806R | 5’-GGACTACNSGGGTMTCTAAT-3’ | ||||
氨氧化细菌 | amoA-1F | 5'-GGGGTTTCTACTGGTGGT-3' | 氨氧化细菌 | [21] | PE250平台单端分析 |
a moA-2R | 5'-CCCCTCKGSAAAGCCTTCTTC-3' | ||||
氨氧化古菌 | Arch-amoAF | 5’-STAATGGTCTGGCTTAGACG-3’ | 氨氧化古菌 | [22] | PE250平台单端分析 |
Arch-amoAR | 5’-GCGGCCATCCATCTGTATGT-3’ | ||||
线虫 | NF1 | 5’-GCTGGTGCATGGCCCTTCTTACTT-3' | 线虫18S | [23] | PE250平台 |
18Sr2bR | 5'-TACAAAGCGCAGCGACCTAAT-3' | ||||
反硝化细菌 (nirS) | Cd3aF | 5’-GTSAACGTSAAGGARACSGG-3’ | nirS | [24] | PE250平台 |
R3cd | 5’-GASTTCGGRTGSGTCTTGA-3’ | ||||
厌氧真菌 | MN100 | 5’-TCCTACCCTTTGTGAATTTG-3’ | 厌氧真菌 | [25] | PE250平台 |
MNGM2C | 5’-CTGCGTTCTTCATCGTTGCG-3’ | ||||
产甲烷古菌 | Met86F | 5’- GCTCAGTAACACGTGG-3’ | 产甲烷古菌 | [26] | PE250平台 |
Met471R | 5’-GWRTTACCGCGGCKGCTG-3’ | ||||
反硝化 细菌(nirK) | nirK583F | 5’- TCATGGTGCTGCCGCGKGACGG-3’ | nirK | [27] | PE250平台 |
nirK909R | 5’-GAACTTGCCGGTKGCCCAGAC-3’ | ||||
反硝化细 菌(nosZ) | nosZ-F | 5’-CGYTGTTCMTCGACAGCCAG-3’ | nosZ | [28] | PE250平台 |
nosZ1622R | 5’-CGSACCTTSTTGCCSTYGCG-3’ | ||||
反硝化细 菌(cnorB) | cnorB2F | 5’- GACAAGNNNTACTGGTGGT - 3’ | cnorB | [29] | PE250平台 |
cnorB6R | 5’- GAANCCCCANACNCCNGC-3’ | ||||
厌氧氨氧化菌 | AMX368F | 5’-TTCGCAATGCCCGAAAG-3’ | Anammox | [30] | PE250平台 |
AMX820R | 5’-AAAACCCCTCTACTTAGTGCCC-3’ | ||||
硫酸盐还原菌 | APS1F | 5’-TGGCAGATCATGATYMAYGG-3’ | aprA | [31] | PE250平台 |
APS4R | 5’- GCGCCAACYGGRCCRTA- 3’ | ||||
藻类 | Cyan359F | 5’-GGGGAATYTTCCGCAATGGG- 3’ | chloroplasts | [32] | PE250平台 |
Cyan781R | 5’-GACTACWGGGGTATCTAATCCCWTT- 3’ | ||||
真核18S | 528F | 5’-GCGGTAATTCCAGCTCCAA-3’ | 18s V4 350bp | [33] | PE250平台 |
706R | 5’-AATCCRAGAATTTCACCTCT-3’ | ||||
大型藻类 | F | 5’-CCAGCASCYGCGGTAATTCC- 3’ | 18S V9 | [34] | PE150平台 |
R | 5’-CCTTCYGCAGGTTCACCTA- 3’ | ||||
大型藻类 | Euka02-F | 5’-TTTGTCTGSTTAATTSCG- 3’ | 18S V7 | [34] | PE150平台 |
Euka02-R | 5’-CACAGACCTGTTATTGC- 3’ |
注明:功能引物为非常规引物,需要收合成费用;
甲方可以提供特殊引物,但是需要经过乙方的确认后收费合成。
|
1. Rosselli R., et al.(2015) Microbial immigration across the mediterranean via airborne dust. Scientific Reports, 5:16306, doi: 10.1038/srep16306.
2. Cheung, M., Au, C., Chu, K. et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4, 1053–1059 (2010). https://doi.org/10.1038/ismej.2010.26.
3. Lam TYC, Mei R, Wu Z, Lee PKH, Liu WT, Lee PH. Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing. Water Res. 2020 Jul 1;178:115815. doi: 10.1016/j.watres.2020.115815. Epub 2020 Apr 18. PMID: 32380296.
4. Zakrzewski M.,et al. (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. Journal of Biotechnology, 158: 248-258.
5. Xiong J., et al.(2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology 14(9): 2457–2466.
6. Liang Y., et al. (2015) Long-term soil transplant simulating climate change with latitude
7. significantly alters microbial temporal turnover The ISME Journal, 9: 2561-2572.
8. Jonathan W. Leff, Noah Fierer. Bacterial communities associated with the surfaces of fresh
9. fruits and vegetables. PLOS one, 8(3):e59310.
10. Mueller R. C., et al. (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest ,The ISME Journal ,8:1548–1550.
11. Logares R., et al. (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. The ISME Journal, 6:1823–1833.
12. Thiago M.A. Santos, et al. (2011) Microbial diversity in bovine papillomatous digital dermatitis in Holstein dairy cows from upstate New York. FEMS Microbiol Ecol, 79:518–529.
13. Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society open science, 2015, 2(7): 150088.
14. Zhang, S., Lu, et al. (2020). Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Molecular Ecology Resources, 20(1), 242-255.
15. Leray, M., Yang, J. Y., et al. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metzoan diversity: Application for characterizing coral reef fish gut con‐ tents. Frontiers in Zoology, 10, 34.
16. Wright D.G.,Omoregie E. O., et al. (2004) Molecular Diversity of Rumen Methanogens from Sheep in Western Australia. Appl Environ Microbiol, 70(3): 1263-1270.
17. Omoregie E.O., et al. (2004) Determination of Nitrogen-Fixing Phylotypes in Lyngbya sp.and Microcoleuschthonoplastes Cyanobacterial Mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol, 70(4): 2119–2128.
18. Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., Young, J.P., 1998. Ploughing up the wood-wide web? Nature 394, 431.
19. Stoeck T., Behnke A., et al. (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biology, 7:72 doi:10.1186/1741-7007-7-72.
20. Rousk J., et al. (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4:1340-1351.
21. Cerqueira T., et al. (2015) Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Marine Genomics, doi:10.1016/j.margen.2015.09.001
22. Saminathan T., et al. (2018) Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Frontiers in Plant Science, 9(4), doi:10.3389/fpls.2018.00004.
23. Ella W., Mat S., et al. (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. The ISME Journal, 5: 1213-1225.
24. Abell G.C.J., et al. (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. The ISME Journal, 4:286-300.
25. Kenmotsu H, Takabayashi E, Takase A, Hirose Y, Eki T. Use of universal primers for the 18S ribosomal RNA gene and whole soil DNAs to reveal the taxonomic structures of soil nematodes by high-throughput amplicon sequencing. PLoS One. 2021 Nov 15;16(11):e0259842. doi: 10.1371/journal.pone.0259842. PMID: 34780544; PMCID: PMC8592498.
26. Faulwetter J.K., et al. (2011) Floating treatment wetlands for domestic wastewater treatment. Water Scuence & Technology, 64(10):2089-2095.
27. Khejornsart P., et al. (2011) Diversty of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livestock Science, 139:230-236
28. Cersosimo L. M., et al. (2014) Examination of the Rumen Bacteria and Methanogenic Archaea of Wild Impalas (Aepyceros melampus melampus) from Pongola, South Africa. Microb Ecol, doi:10.1007/s00248-014-0521-3
29. Ji G. D., et al. (2012) Distribution patterns of denitrification functional genes and microbial floras in multimedia constructed wetlands. Ecological Engineering, 44:179-188.
30. Throback I.N., et al. (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 49: 401-417.
31. Lu H.J., et al. (2014) Microbial ecology of denitrification in biological wastewater treatment.
32. Water Research, doi: 10.1016/j.watres.2014.06.042.
33. Wang S.L., et al. (2015) Comparative analysis of two 16S rRNA gene-based PCR primer sets provides insight into the diversity distribution patterns of anammox bacteria in different environments. Methods and Protocols, 99: 8163-8176.
34. Blazejak A., et al. (2006) Phylogeny of 16S rRNA, Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, and Adenosine 5 -Phosphosulfate Reductase Genes from Gammaand Alphaproteobacterial Symbionts in Gutless Marine Worms (Oligochaeta) from Bermuda and the Bahamas.Appl Environ Microbiol, 72(8): 5527-5536.
35. Deng S.Q.,et al. (2016) Use of quantitative PCR with the chloroplast gene rps4 to determine moss abundance in the early succession stage of biological soil crusts. Biol Fertil Soils, doi: 10.1007/s00374-016-1107-7.
36. Cheung, M., Au, C., Chu, K. et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4, 1053–1059 (2010). https://doi.org/10.1038/ismej.2010.26.
37. Ortega A, Geraldi NR, Díaz-Rúa R, Ørberg SB, Wesselmann M, Krause-Jensen D, Duarte CM. A DNA mini-barcode for marine macrophytes. Mol Ecol Resour. 2020 Jul;20(4):920-935. doi: 10.1111/1755-0998.13164. Epub 2020 May 16. Erratum in: Mol Ecol Resour. 2021 Apr;21(3):1000. PMID: 32279439.